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We divide the interaction between wind and ocean surface waves into three parameter
regimes, namely slow, intermediate and fast waves, that are distinguished by the ratio
c/u∗ (c is the wave phase speed and u∗ is the friction velocity in the wind). We develop
here an analytical model for linear changes to the turbulent air flow caused by waves
of small slope that is applicable to slow and to fast waves. The wave-induced turbulent
shear stress is parameterized here with a damped mixing-length model, which tends to
the mixing-length model in an inner region that lies close to the surface, and is then
damped exponentially to zero in an outer region that lies above the inner region.
An adjustable parameter in the damped mixing-length model controls the rate of
decay of the wave-induced stress above the inner region, and shows how the results
vary from a model with no damping, which corresponds to using the mixing-length
model throughout the flow, to a model with full damping, which, following previous
suggestions, correctly represents rapid distortion of the wave-induced turbulence in
the outer region.

Solutions for air flow over fast waves are obtained by analysing the displacement of
streamlines over the wave; they show that fast waves are damped, thereby giving their
energy up to the wind. There is a contribution to this damping from a counterpart
of the non-separated sheltering mechanism that gives rise to growth of slow waves
(Belcher & Hunt 1993). This sheltering contribution is smaller than a contribution
from the wave-induced surface stress working against the orbital motions in the water.
Solutions from the analysis for both slow and fast waves are in excellent agreement
with values computed by Mastenbroek (1996) from the nonlinear equations of motion
with a full second-order closure model for the turbulent stresses. Comparisons with
data for slow and intermediate waves show that the results agree well with laboratory
measurements over wind-ruffled paddle-generated waves, but give results that are a
factor of about two smaller than measurements of purely wind-generated waves. We
know of no data for fast waves with which to compare the model. The damping rates
we find for fast waves lead to e-folding times for the decay of the waves that are a
day or longer. Although this wind-induced damping of fast waves is small, we suggest
that it might control low-frequency waves in a fully-developed sea.

1. Introduction
There has been renewed interest in recent years in studying the ways that the wind

blowing over the ocean interacts with surface waves. This renewed interest has been
catalysed by applying the understanding of the role of turbulent stresses in flow over
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hills (e.g. Hunt, Leibovich & Richards 1988; Belcher, Newley & Hunt 1993) to under-
stand flow over waves. Turbulent stresses in the air flow over waves lead to a sheltering
in the lee of the wave, whereby streamlines are displaced asymmetrically about the
wave crest and wind speeds in the lee of the wave are reduced. This mechanism is re-
lated to the mechanism put forward by Jeffreys (1925), who assumed that the air flow
separates in the lee of the wave crest. Over waves of small slope, with no separation,
a non-separated sheltering leads to growth of the waves (Belcher & Hunt 1993; Miles
1993, 1996; van Duin 1996; Zou 1998). This mechanism complements the celebrated
critical-layer mechanism of wave growth first analysed by Miles (1957). There have
been studies of how turbulent stresses affect Miles’ (1957) critical-layer mechanism
(Miles 1993, 1996; Belcher,Hunt & Cohen 1998), but no definitive results have been
found. These developments have been reviewed recently by Belcher & Hunt (1998).

Most of these recent studies have focused on waves that are strongly forced by the
wind, so that c/u∗ is small (c is the wave phase speed and u∗ is the friction velocity
in the wind). Belcher & Hunt (1993) called these slow waves. A practical reason for
studying these slow waves is that they grow rapidly under the strong wind forcing.
When the waves are slow the ‘inner region’, where the turbulent stresses have their
strongest effect, is thin and the critical height, zc, where the wind speed equals the
wave speed is very close to the surface. Approximate analytical solutions then show
that the critical layer does not have a strong dynamical effect on growth of slow waves
(van Duin & Janssen 1992; Belcher & Hunt 1993; Miles 1996). As the wave speed
increases, the critical height moves upwards away from the surface and eventually
becomes comparable to the depth of the inner region. There is then a complicated
interaction between the sheltering mechanism for wave growth and the critical-layer
mechanism, the details of which have not been quantified (Belcher & Hunt 1998).

At faster wave speeds still, the critical height moves far above the wave surface: too
far to have a significant dynamical effect on the flow. The dynamics of the air flow
over these fast waves has not been studied before. These fast waves arise naturally in
two important practical situations. First, fast waves arise as the sea state approaches
‘full development’ (Pierson & Moskowitz 1964), i.e. when waves at the peak in the
spectrum have phase speeds approaching the synoptic wind speed. Nonlinear wave–
wave interactions then transfer energy from the peak in the spectrum and generate
waves of lower frequency, which travel faster than the wind. Secondly, when swell
propagates away from a storm into areas of lighter winds, slow waves can become
fast waves. Fast waves are also interesting for theoretical reasons. For fast waves the
critical height either lies well above the wave surface, or does not exist at all if the wave
travels faster than the wind. So effects of turbulent stresses are the only mechanism
that can lead to asymmetry in the flow and thence energy exchange between the wind
and waves. Even without detailed calculations we know that any interaction between
fast waves and wind must be weak because it is well known that swell can propagate
huge distances without being strongly affected by wind (e.g. Ursell 1954). Nevertheless,
a comprehensive theory of wind–wave interaction should quantify the interaction, and
should also show the circumstances when the interaction becomes stronger.

Here we develop an analytical model, formulated in § 2, for linear changes to
turbulent boundary layer flow over waves of small slope. We focus on waves that
propagate in the same direction as the wind (although waves travelling against the
wind can be treated with the model of Belcher & Hunt 1993). We show in § 3 that the
wave-induced air flow is usefully divided into ‘inner’ and ‘outer’ regions, where the
turbulence responds to the wave differently and needs to be modelled differently. In
§ 4 the momentum equations are scaled to determine the dominant balances, which
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leads to the formal indentification of the fast-wave limit. Approximate analytical
solutions are then found for the wave-induced changes to the air flow in § 5 based on
the approximation that an ‘inner region’ is a thin ‘internal boundary layer’. The wave-
induced pressure and stress do work at the surface which, as shown in § 6, leads to
growth of slow waves and decay of the fast waves. Finally conclusions are given in § 7.

2. Formulation of the physical model
In the limit of vanishing waves, when the interface is flat and located at z = 0,

air flows in the positive x-direction as the surface layer of a steady fully-developed
neutrally-stable atmospheric boundary layer. The velocity profile in the air, UB(z), is
then logarithmic, namely UB =

(
u∗/κ

)
ln
(
z/z0

)
, where κ is the von Kármán constant

(taken here to be 0.4), and z0 is the roughness parameter; the shear stress, τB , is
constant with height and equal to ρau

2∗, where ρa is the density of the air and u∗ is
the friction velocity. We calculate the linear changes to this basic flow caused by a
two-dimensional wave of small slope that travels along the air–water interface in the
wind direction.

Perturbations to the basic flow are forced by two processes: (i) the undulating
water surface and (ii) the non-zero velocity at the wave surface associated with the
wave-induced water motions. Both processes scale on the wave slope and hence so
do wave-induced perturbations to the basic flow. The wave slope is assumed here to
be small, and we investigate linear changes to the basic flow. Then it is sufficient to
consider sinusoidal waves described by zs = Re

{
aeikx

}
, where a is the wave amplitude,

k is the wavenumber, and the wave slope is ak � 1.
The roughness of the surface, z0, represents the drag on the air flow of the small-scale

waves riding along the primary sinusoidal wave. Hence we imply a scale separation
between the primary wave, whose effect on the air flow we calculate explicitly, and
the small-scale waves. Then kz0 is a small parameter of the model. The primary wave
leads to a contribution to the drag on the air flow. Makin, Kudryatsev & Mastenbroek
(1995) show how the total drag due to a wind sea with a broad spectrum of waves can
be calculated by summing over the spectrum the drag due to a single sinusoidal wave.
They show that this procedure yields a Charnock relation between the roughness and
the friction velocity, namely z0 ∝ u2∗/g. With this development in mind we prefer
to keep kz0 a parameter of the present model rather than parameterising it using a
Charnock relation, which some authors have advocated (see for example Komen et
al. 1994, section II.2). In addition to kz0 � 1, the parameters of the model are the
wave slope, ak � 1, and the ratio of the wave speed to the wind speed, c/u∗; their
values are discussed in § 4.2.

Calculations are performed in a reference frame moving with the wave crests, when
at leading order the basic wind profile is simply displaced over the wave surface and
can be written

UB =
u∗
κ

ln {(z − s)/z0} − c, (2.1)

where s is the vertical displacement of a mean streamline from its position in the
unperturbed flow (see figure 1). Following Miles (1993) and Zou (1998) perturbations
to the air flow induced by the travelling wave are analysed in terms of s(ξ, η), where
η labels the streamlines in the basic state, so that the streamfunction, ψ, is given by
ψ =

∫
UB(η)dη. The analysis is then performed in a streamline coordinate system,

(ξ, η), defined by

x = ξ, z = η + s(ξ, η).
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Figure 1. Schematic of the flow geometry.

The horizontal and vertical velocities over the wave, u and v, written in terms of this
streamline coordinate system are

u = UB + ũ =
UB(η)

1 + ∂s/∂η
∼ UB(1− ∂s/∂η), (2.2)

w = w̃ =
UB(η)∂s/∂ξ

1 + ∂s/∂η
∼ UB∂s/∂ξ, (2.3)

which automatically satisfy continuity, and where the approximate forms are for waves
of small slope. Upper-case letters with subscripts B denote variables associated with
the basic flow, and an overbar denotes basic-state variables measured in the laboratory
frame, otherwise the reference frame moves with the wave crests. The symbols ũ and
w̃ denote the wave-induced perturbations to the horizontal and vertical velocity.

If the ensemble-averaged Navier–Stokes equations are transformed into the stream-
line coordinate system and then linearised for small perturbations, then the horizontal
and vertical momentum equations become

UB

∂ũ

∂ξ
= −∂p̃

∂ξ
+
∂τ̃

∂η
, (2.4)

UB

∂w̃

∂ξ
= −∂p̃

∂η
+
∂τ̃

∂ξ
, (2.5)

which show the power of the streamline coordinate system, namely that the advective
rates of change are only in the ξ-direction, i.e. along the streamlines. Here, τ̃ is the
wave-induced turbulent shear stress; the wave-induced normal turbulent stresses are
neglected in the analysis here because their effects are smaller than the dominant
terms calculated (Townsend 1972).

The boundary condition on u at the wave surface is the no-slip condition, so that
the wave-induced flow must match the tangential velocity associated with the orbital
motions in the water, ũs. The boundary condition on w arises from local continuity
and ensures that the surface is a streamline, i.e. w(z0) = Dzs/Dt. Hence

u = −c+ ũs, w = −c dzs/dξ on η = z0. (2.6)

This shows a second advantage of the streamline coordinates, namely that boundary
conditions can be applied actually at the boundary, rather than being linearized onto
a horizontal surface. For linear irrotational water waves on deep water, and neglecting
any small drift current in the water, ũs = Re

{
akc eikξ

}
. In addition, the wave-induced
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flow decays to zero far above the air–water interface, i.e.

ũ, w̃ → 0 as kη →∞. (2.7)

Equations and boundary conditions have now been formulated for describing
linear changes to the streamline displacement h(η) forced by a travelling wave. The
formulation is completed by specifying a model for the wave-induced perturbations
to the turbulent shear stress, τ̃. This important issue is discussed next.

3. Inner and outer regions
Following previous studies of turbulent boundary layer flow over hills (Jackson &

Hunt 1975; Britter, Hunt & Richards 1981), and over waves (Townsend 1972, 1980;
Belcher & Hunt 1993), it is helpful to divide the flow over the waves into inner
and outer regions, where different physical processes dominate (refer to figure 1).
As reviewed recently by Belcher & Hunt (1998), the effects of a travelling wave on
turbulence in the air flow can be understood by examining the ratio of an advection
time scale, TA, to an eddy decorrelation time scale, TL. These ideas are briefly
recounted here, and following Cohen (1997) some new thoughts are given on how
they apply to fast-moving waves.

The advection time scale, TA, is a time scale for turbulent eddies to be distorted
as they are advected by the mean flow over a wavelength. Hence the appropriate
advection speed is relative to the wave, i.e. UB(η) = UB − c. The main new idea
required to apply this scaling argument to fast waves is the recognition that above the
critical height the mean-flow advection is in the positive x-axis direction, but below
the critical height it is in the negative x-direction. For the purpose of scaling it is the
magnitude, and not the sign, of TA that is important, and so to keep the definition of
TA positive, the modulus of UB(η) is used, hence

TA = k−1/|UB(η)|. (3.1)

This definition of the advection time scale is then appropriate for the whole range
of wind and waves speeds, including fast waves. The eddy-decorrelation time scale,
TL, characterizes the time it takes for eddies to decorrelate and interact with one
another, and so it is also the time scale for turbulence to come into equilibrium with
the surrounding mean-flow velocity gradient. The strong density jump at the air–sea
interface constrains the turbulence as a solid wall would (Lombardi, De Angelis &
Bannerjee 1996) and so an estimate for TL follows the estimate in a wall boundary
layer, namely

TL = κη/u∗. (3.2)

The ratio of these time scales gives a measure of how far the turbulence is from a
local equilibrium. When TL � TA turbulent eddies decorrelate many times before
being advected over the wave. Hence these eddies approach local equilibrium with
local production of turbulent kinetic energy balancing dissipation. The mixing-length
model can then be used to relate the wave-induced Reynolds stress to the local
wave-induced mean-velocity gradient (Townsend 1961); hence, on using the linearized
form of (2.2),

τ̃ml = 2κu∗η
∂ũ

∂η
= −2κu∗η

∂

∂η

(
UB(η)

∂s

∂η

)
. (3.3)

In contrast, when TL � TA, the turbulent eddies are carried over the wave by the
mean flow more rapidly than they can turn over and interact nonlinearly. The eddies
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Figure 2. Variation of depth of the inner region (solid line), critical height (dotted line) and
middle layer height (dashed line); kz0 = 10−4.

are then distorted primarily by the mean straining by the wave-induced air flow, and
can be described using rapid distortion theory (Britter et al. 1981).

These two limiting behaviours both occur in the flow over a wave because TL
increases and TA decreases with height above the wave surface. They are equal,
TA = TL, at heights η = li, defined implicitly by

kli | ln(li/z0)− κc/u∗| = 2κ2. (3.4)

The value of the order-one constant on the right is chosen to be consistent with the
scaling of the mean momentum equation, described in § 4.2.

Figure 2 shows the variation of li with c/u∗, when kz0 = 10−4 (a typical oceanic
value). As shown by Belcher & Hunt (1993), for slow waves there is just one value
of li and the air flow can be divided into two regions: an ‘inner’ equilibrium region,
η < li, where TL < TA, and an ‘outer’ rapid-distortion region, η > li, where TA < TL.
For these small values of c/u∗ the critical height, zc, lies well within the inner region.

When negative advection below the critical height is correctly accounted for by
including the modulus signs in (3.1) there are three solutions to (3.4) when c/u∗ is
larger than (c/u∗)b = {ln(2κ2/kz0)+1}/κ. The lowest solution, li, defines a region close
to the surface, η < li, where TL < TA, which is therefore an equilibrium region that is
called here the inner region. Above this inner region, TA < TL and the turbulence is
distorted rapidly, except for a thin layer between the other two solutions to (3.4) which
lie either side of the critical height (figure 2). Hence the flow can be considered to
have an ‘outer’ rapid-distortion region above the inner region. Near the critical height
the mean-flow advection is small and so TL < TA, which suggests that the eddies
reach a local equilibrium. But as noted by Phillips (1977, p. 121) turbulent fluctuations
transport eddies vertically across this critical layer in a time that is too short for a
local equilibrium to become established and so in this intermediate regime, when the
critical height is neither very far from nor very close to the interface (i.e. kzc = O(1)),
a new time scale associated with this turbulent transport would need to be analysed.
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In the fast wind-wave parameter regime analysed here it is not necessary to analyse
this region around the critical layer because it lies too far from the interface to affect
the dynamics (see § 4). Also shown on figure 2 is the height of the ‘middle layer’
kz = (δ/κ)1/2 where, as explained in § 5.6, the pressure perturbation is determined.

Here, following Harris, Belcher & Street (1996), van Duin (1996) and Cohen
(1997), the wave-induced Reynolds shear stress is parameterized so that it interpolates
between the mixing-length model (3.3) in the inner region and zero in the outer region.
Specifically we use

τ̃ = τ̃ml exp{−kη/δn}, (3.5)

where τ̃ml is the stress from the mixing-length model (3.3) and δ = u∗/|U1|. The
parameter n is chosen to lie between 0 and 1 so that the exponential decay occurs
in the overlap between the inner and outer regions. This model works equally well
for both fast and slow waves because, as explained above, inner and outer regions
can be defined in both regimes. Hence the mixing-length model is appropriate in the
inner region for both regimes, but must be damped to zero in the outer region of
both regimes.

The model (3.5) parameterizes explicitly neither the advection of stress that becomes
important around η ∼ li, nor the rapid-distortion processes in the outer region;
previous experience suggests that it is sufficient to calculate the wave-induced flow
and wave growth rate (see e.g. Belcher & Hunt 1998 or the comments given in § 6
following comparisons with other studies).

An elegant alternative to this explicit damping has been proposed by Townsend
(1972), who developed a transport equation for the wave-induced stress that has
been used in analytical studies of boundary layer flow over waves and hills by Miles
(1996) and Zou (1998). This equation tends to the mixing-length model for the stress
towards the surface, and gives a wave-induced stress of the correct magnitude in the
outer region. The equation does not, however, model explicitly the rapid response of
the turbulence in the outer region (Townsend 1980). The simpler approach (3.5) is
preferred here as it simplifies the analysis and also to illustrate that it contains the
essential dynamical elements.

4. Scale analysis and definition of fast waves
We have developed the idea of dividing the flow into inner and outer regions

based on the behaviour of the turbulence in the distorted boundary layer. Now
consider how the turbulent stresses affect the mean flow in the inner and outer
regions. Hence in § 4.1, below, the dominant dynamical balances in the horizontal
momentum equation (2.4) are determined using scaling estimates. This scaling leads
to identification of a parameter, δ; when δ is small, solutions for the mean flow can
be found using asymptotic methods. Hence, in § 4.2 we determine the range of wind
and wave speeds required for δ to be small.

4.1. Dominant balances in the inner and outer regions

The dominant balance in the streamwise momentum equation (2.4) changes through
the depth of the wave-induced flow, partly because different estimates are needed
for the shear stress in the different regions of the flow, and partly because the ad-
vection speed varies with depth. In the rapid-distortion region, exact rapid-distortion
calculations (Britter et al. 1981; Belcher et al. 1993) show that

τ̃ = O(u2
∗ũ/UB) = O(aku2

∗). (4.1)
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These exact calculations show clearly that the same scaling applies to the outer region
in both the slow and fast waves. In the local-equilibrium region the mixing-length
model (3.3) scales as

τ̃ = −2κu∗η
∂

∂η

(
UB

∂s

∂η

)
= O

(
κu∗η

1

η
UB

a

η

)
. (4.2)

Then in the outer region, where there is rapid distortion and kη = O(1), the ratio
of terms in the streamwise momentum equation (2.4) is∣∣∣∣stress gradient term

advection term

∣∣∣∣ =

∣∣∣∣ ∂τ̃/∂η

UB∂ũ/∂ξ

∣∣∣∣ = O

(
aku2∗
akU2

1

)
= O(δ2), (4.3)

where U1 = UB(1/k) and δ = u∗/ |U1|. Thus if δ � 1 the perturbation Reynolds stress
leads to only very small changes to the mean flow in the region of rapid distortion.

In the inner region, adjacent to the wave surface, where η = O(li) and the turbulence
tends to local equilibrium, and using (2.2) to estimate ũ, shows that∣∣∣∣stress gradient term

advection term

∣∣∣∣ ∼ ∣∣∣∣{u∗li(UB(li)a/li)/li}/li
UB(li)ikaUB(li)/li

∣∣∣∣ ∼ u∗
|UB(li)|

1

kli
= O(1) (4.4)

on using (3.4), the definition of kli. Hence mean-flow advection balances the pertur-
bation stress gradient in the inner region.

Now if the relative thickness of the inner region, kli, is small then the inner region
can be analysed as a thin internal boundary layer and it is easy to show that kli = O(δ)
when δ � 1 (see Cohen 1997). Therefore internal-boundary-layer methods may be
used to analyse the inner region when δ � 1. Next the wind-wave parameters that
give δ � 1 are determined.

4.2. Definition of slow and fast waves

With the present model formulation, there are two independent parameters that
specify the problem: the relative roughness of the wave, kz0, and the relative wave
speed, c/u∗. We now determine how the relative values of these parameters determine
the wind-wave regime. Hence we consider the limit kz0 → 0 and determine the range
of values of c/u∗ required for slow and fast waves.

The slow and fast wind-wave regimes are distinguished by small values of the
parameter δ, which can be written in terms of the relative height of the critical level,
kzc:

δ = u∗/ |U1| = κ/ |ln(1/kz0)− κc/u∗| = κ/| ln(kzc)|. (4.5)

Hence δ is small when either kzc is small, so that the critical height lies close to the
surface, or when kzc is large, so that the critical height lies well above the surface.

First, the limit of slow waves, when kzc is small and lies close to the surface, requires

kzc = kz0 eκc/u∗ � 1. (4.6)

Belcher & Hunt (1993) show that this condition is equivalent to κc/u∗ = O(1) as
δ → 0, hence slow waves.

Secondly, in the limit of fast waves, when kzc is large, it is helpful to suppose that
kzc = (1/kz0)

p, so that kzc → ∞ as kz0 → 0. In this limit the critical height is far
from the wave surface, so the Miles (1957) critical-layer mechanism of wave growth
must be small and therefore can be neglected here. This relation between kzc and kz0

means that

δ =
κ

| log(kzc)| =
κ

p log(1/kz0)
. (4.7)
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Combining the definition kzc = kz0 eκc/u∗ with kzc = (1/kz0)
p shows that the relative

wave speed is given by

κc/u∗ = (p+ 1) ln(1/kz0). (4.8)

Therefore (4.7) and (4.8) combine to give

δc

u∗
=

1 + p

p
= C which is chosen to be fixed and O(1) as δ → 0. (4.9)

We define this relationship between the two basic parameters, δ = u∗/|U1| and c/u∗,
namely the limit δ → 0 with δc/u∗ fixed and O(1), to be the formal limit for fast
waves.

In practice the wind-wave regime is easily calculated by computing the value of
δ/κ (which the analysis of § 5 shows to be the relevant parameter). Hence the wind
waves are defined to be slow or fast when δ/κ < 1. Then, accounting for the modulus
sign in the definition of δ, slow waves are defined by c/u∗ < {ln(1/kz0) − 1}/κ and
fast waves by c/u∗ > {ln(1/kz0) + 1}/κ. When kz0 = 10−4 this classification yields
slow waves when 0 < c/u∗ < 20 and fast waves when 25 < c/u∗.

5. Asymptotic solution for air flow over fast waves
A single equation for the streamline displacement is obtained by eliminating pres-

sure between the nonlinear counterparts of (2.4) and (2.5) and then substituting
for ũ and w̃ using (2.2) and (2.3). The result is linearized for small perturbations
and the streamline displacement is written s = Re

{
h eikx

}
, where h is a complex

amplitude. Similarly other wave-induced variables are written as complex ampli-
tudes, e.g. ũ = Re{û eikx}. This procedure shows that the linear displacement of the
streamline, h, is governed by

− ∂

∂η

(
U2
B

∂h

∂η

)
+ k2U2

Bh = −i
1

k

∂2τ̂

∂η2
− ikτ̂ (5.1)

(cf. Miles 1993; Zou 1998), which is the Rayleigh equation transformed into the
streamline coordinate system with forcing from the wave-induced turbulent stress,
which is modelled according to (3.5). The boundary conditions (2.6) and (2.7) are
transformed into boundary conditions on the streamline displacement, h(η), using (2.2)
and (2.3), which gives

h = a,
∂h

∂η
= ak on η = z0, and h,

∂h

∂η
→ 0 as η →∞. (5.2)

These equations are now solved for fast waves using formal asymptotic expansions
in each of the regions.

A dimensionless basic velocity profile is defined to be

V (η) = UB(η)/U1 where U1 = UB(1/k). (5.3)

Then, since U1 < 0 for fast waves, in the range z0 < η < 1/k the dimensionless velocity
is in the range 0 < V (η) < 1. Then δ = u∗/|U1| = −u∗/U1 for fast waves. Throughout
the analysis the amplitude of the streamfunction displacement, h, is normalized on
wave amplitude, a, and is distinguished in the different layers by a subscript, e.g. hi
for the inner region.
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5.1. Outer region

The outer region is split into two layers: the upper layer where the effect of the
perturbation shear stress is exponentially small; and, nearer the surface, the transition
layer, which resolves the decay of the eddy viscosity and there are weak O(δ)
interactions between the advection of the mean flow and the perturbation shear
stress.

5.1.1. Upper layer

In the upper layer the height is made dimensionless on 1/k so that η1 = kη,
then (5.1) reduces to

∂2h1

∂η2
1

− h1 = −2
V ′

V

∂h1

∂η1

+ O
(
δ exp{−η1/δ

n}) . (5.4)

The exponentially small correction on the right is from the Reynolds stress gradients,
which have been forced here to be exponentially small through the damping in the
model for τ̃ in (3.5). Solutions to (5.4) can be found based on the approximation that
the shear is weak. For a logarithmic basic flow

V ′/V = −δ/κVη1, (5.5)

which is small and O(δ) in the upper layer where η1 = O(1). Hence, the dynamics are
governed by a Rayleigh equation with weak shear, and solutions can be found using
the methods developed by Lighthill (1957), namely by expanding h1 in powers of δ:

h1 = h
(0)
1 + δh

(1)
1 + δ2h

(2)
1 + O(δ3). (5.6)

We find the following iterative solution:

h
(0)
1 = H0 e−η1 ,

h
(i)
1 = Hi e

−η1 − eη1

∫ η1 V ′

V

dh(i−1)

dy
e−y dy + e−η1

∫ η1 V ′

V

dh(i−1)

dy
ey dy,

 (5.7)

where Hi are unknown constants determined by matching with solutions in the lower
layers. Explicit forms of the solution up to O(δ2) are given by Cohen (1997).

Towards the surface, as η1 decreases, the upper-layer solution becomes invalid
because both the shear term and the gradient of the perturbation shear stress in (5.1)
become important. Hence the transition layer needs to be analysed.

5.1.2. Transition layer

In the transition layer the vertical coordinate is η1 = δnηt, with ηt = O(1) so that
the exponential decay of the stress model is resolved. Then (5.1) reduces to

∂

∂ηt

(
V 2 ∂ht

∂ηt

)
= δ2nV 2ht + iδ1−n ∂2τ̂t

∂η2
t

, (5.8)

where the rescaled dimensionless shear stress, τ̂t, is

τ̂t = 2κηt
∂

∂ηt

(
V
∂ht

∂ηt

)
e−ηt . (5.9)

Hence, the dynamics are controlled by the Rayleigh equation in the long-wave limit,
with small corrections for the finite wavelength (the first term on the right of (5.8)),
and for small stress gradients (the second term on the right of (5.8)).
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Solutions are found by expanding ht in powers of δ:

ht = h
(0)
t + δnh

(1)
t + δ2nh

(2)
t + · · ·

+δh(3)
t + δ1+nh

(4)
t + · · ·

+δ2h
(5)
t + · · · , (5.10)

where the neglected terms of O(δ3n), O(δ1+2n) and O(δ1+n) are not required when
matching with the upper and shear stress layers. Substitution of this expansion into
(5.8) leads to a sequence of differential equations that are solved at each order in δ
to yield

h
(0)
t =T0,

h
(1)
t =T1

∫ ηt 1

V 2
dx+ T2,

h
(2)
t =T0

∫ ηt 1

V 2

∫ x

V 2dy dx+ T3

∫ ηt 1

V 2
dx+ T4,

h
(3)
t =−2κiT1

∫ ηt 1

V 2

∂

∂x

(
e−x

V 2
x
∂V

∂x

)
dx+ T5

∫ ηt 1

V 2
dx+ T6,

h
(4)
t = 2κiT0

∫ ηt 1

V 2

∂

∂x

{
xe−x

∂

∂x

(
1

V

∫ x

V 2dy

)}
dx

−2κiT3

∫ ηt 1

V 2

∂

∂x

(
e−x

V 2
x
∂V

∂x

)
dx+ T7

∫ ηt 1

V 2
dx+ T8,

h
(5)
t =T9 − iT1

2

V 4
e−ηt + other terms.



(5.11)

The ‘other terms’ in h(5)
t are not required to match to O(δ2) with the solutions in the

upper layer and inner region.
As shown in detail in Cohen (1997), matching the transition-layer and upper-layer

solutions, using the intermediate variable η1 = δαηut where 0 < α < n, relates the Tn
to the Hn:

T0 = H0, T1 = −H0, T2 = 0, T3 = 0, T4 = 0,

T5 = 0, T6 = H1, T7 = −H1, T8 = 0, T9 = H2.

}
(5.12)

5.2. Fast waves and very fast waves

There are two subranges of fast waves, namely fast and very fast waves, that cor-
respond mathematically to whether or not z0/li is small. To explain this difference
recall that, as shown in § 4.1, across the bulk of the inner region, advection balances
the perturbation stress gradient. But very close to the wave surface, where η = O(z0)
and UB(z0) = −c

advection term

stress gradient term
= O

(
kU2

B(z0)a/z
2
0

u∗UB(z0)a/z
3
0

)
= O

(
kz0

u∗/c

)
. (5.13)

Hence for this balance between advection and stress gradient to persist right down
to the air–water interface requires kz0c/u∗ = O(1) as δ → 0, which requires very
fast waves speeds: much faster than required by the limit δc/u∗ = O(1) established
in § 4.2 for fast waves. Hence there are two subregimes of fast waves. Wind-wave
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systems that satisfy kz0c/u∗ = O(1) are termed here very fast waves and are treated
separately in § 5.5. Solutions for very fast waves are denoted with superscript (vf). In
the more typical fast-wave subregime, when δc/u∗ = O(1), the ratio in (5.13) becomes
kz0c/u∗ → 0 as kz0 → 0. So that as the surface is approached the advection becomes
too weak to balance the gradient of the perturbation shear stress. In this case an
inner surface layer must be analysed where the shear stress gradient is zero to leading
order (cf. the analysis of Sykes 1980 of flow over hills). The remainder of the inner
region, where advection balances stress gradient, is called here the inner shear stress
layer. Solutions in the fast-wave regime are denoted with a supscript (f).

5.3. Inner shear stress layer for fast waves

Within the inner region, the vertical coordinate is η = liηi, with ηi = O(1). Furthermore,
the mean velocity written in terms of this inner region variable is

V (ηi) = Vi − δ

κ
ln ηi, (5.14)

where Vi = UB(li)/U1 is O(1) as δ → 0 (Cohen 1997). The governing equation for hi
in inner region then becomes

−i
∂2

∂η2
i

(
ηi
∂2hi

∂η2
i

)
+
∂2hi

∂η2
i

= δ
1

κVi

[
2

ηi

∂hi

∂ηi
+ 2 ln ηi

∂2hi

∂η2
i

− i
∂2

∂η2
i

{
ηi
∂

∂ηi

(
∂hi

∂ηi
ln ηi

)}]

+ δ2

(
2κ

Vi

)2

hi + O

(
δ2 ∂

mhi

∂ηmi

)
+ O

(
δ3
)
, (5.15)

where m > 1 is an integer so that neglected terms at O(δ2) contain derivatives of hi.
For these terms to contribute to the O(δ2) solution calculated here the derivatives
of the O(1) solution would need to be non-zero; however it will be shown later that
hi is constant at O(1). There are four linearly-independent solutions for hi to the
leading-order homogeneous equation, namely a constant, ηi, K

∗
0 (X) and I∗0 (X), where

K∗0 and I∗0 are the complex conjugates of the zeroth-order modified Bessel functions
of the second kind (Abramowitz & Stegun 1972) and X = 2(iηi)

1/2. But I∗0 grows
exponentially at large heights and so is rejected as not being physical.

The amplitude of the streamline displacement, hi, is expanded in powers of δ

h
(f)
i = h

(0)
i + δh

(1)
i + δ2h

(2)
i + O

(
δ3
)
, (5.16)

and equation (5.15) is then solved iteratively to give

h
(f)
i = I

(f)
0 + δ

(
I

(f)
1 ηi + I

(f)
2

)
+ δ2

{
I

(f)
3 ηi

∂K∗0
∂ηi

+ I
(f)
4 ηi + I

(f)
5 + I

(f)
0

(
2κ

Vi

)2
η2
i

2

+
2

κVi
I

(f)
1 ηi (ln ηi − 1)

}
+ O(δ3), (5.17)

where, for brevity, the homogeneous solutions are included only when their coeffi-
cients, In, n = 1...5, eventually turn out to be non-zero when they are obtained by
matching with the adjacent layers.

Cohen (1997) shows that matching these solutions with the transition layer, using
the intermediate variable η1 = δβηti where n < β < 1, gives

I
(f)
0 = T0, I

(f)
1 = − 2κ

V 3
i

T0, I
(f)
2 = T6, I

(f)
4 = i

4κ2

V 2
i

T0 − 2κ

V 3
i

T6, I
(f)
5 = T9. (5.18)
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This solution in the shear stress layer ceases to be asymptotic in the limit of small ηi
because the gradient of the fourth term in (5.17), δ2I

(f)
3 ηi∂K

∗
0/∂ηi, diverges logarith-

mically as ηi → 0. Therefore it is necessary to analyse an inner surface layer where
η ∼ O(z0). Between the inner shear stress layer and inner surface layer, it is simpler to
match the wave-induced streamwise velocity, calculated from (5.17) using (2.2), which
is given by

û ∼ −ak U2
i

2κU1

[
I

(f)
1 + δ

{
−iI (f)

3 K∗0 + I
(f)
0

4κ2

V 2
i

ηi + I
(f)
4 +

I
(f)
1

κVi
ln ηi

}
+ O(δ2)

]
. (5.19)

This expression, in the limit of small ηi, when K∗0 → − 1
2

ln ηi, is matched with the
solution in the inner surface layer, which is derived next.

5.4. Inner surface layer for fast waves

The vertical coordinate in the inner surface layer is made dimensionless on z0, so that
η = z0η0 with η0 = O(1). Then equation (5.1), which governs the air flow perturbations,
becomes

∂2τ̂

∂η2
0

= −kz0

δ

i

2κ2

∂

∂η0

{(
ln η0 − κc/u∗)2 ∂h0

∂η0

}
+ O

{
(kz0)

2
}
, (5.20)

which just states that, at leading order in kz0/δ, the stress is constant across the inner
surface layer (cf. Sykes 1980; Zou 1998). The terms of O(kz0/δ) are exponentially
small compared with powers of δ and so are negligible here. Hence the wave-induced
stress and streamwise velocity in the inner surface layer are

τ̂ ∼ aku2
∗
{
S

(f)
0 + O(kz0/δ

2)
}
, (5.21)

û ∼ ak
{
c+ 1

2
S

(f)
0

u∗
κ

ln η0 + O(u∗kz0)
}
. (5.22)

Matching this solution for û with the solution in the inner shear stress layer (5.19)
is delicate and needs to be done rigorously by rewriting each solution in terms of an
intermediate variable ηi0, defined by η = (z0/li)

αliηi0. The solutions are then matched
in the limit z0/li → 0 with ηi0 = O(1). This procedure determines the remaining
unknown constants to be

I
(f)
0 = 1, I

(f)
2 = 0, I

(f)
3 = 2I (f)

5 = −2i

(
S

(f)
0

V 2
i

+
2

V 4
i

)
,

S
(f)
0 =

2

V 2
i

(
1− c

Ui

)
− 2

c

Ui

.

 (5.23)

5.5. Inner region for very fast waves

In the very fast sub-regime the inner region is governed by the same equation as for
the inner shear stress layer of the fast sub-regime, namely (5.15). The difference is
that there is no inner surface layer and boundary conditions at the wave surface are
applied directly to the solution to this equation. It is found that the Bessel function
then has a non-zero coefficient at O(δ) rather than O(δ2), and so the solution is

h
(vf)
i = I

(vf)
0 + δ

(
I

(vf)
1 ηi + I

(vf)
2 + I

(vf)
3 ηi

∂K∗0
∂ηi

)
+ O

(
δ2
)
. (5.24)
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Matching with the transition layer gives

I
(vf)
0 = T0, I

(vf)
1 = − 2κ

V 3
i

T0, I
(vf)
2 = T

(vf)
6 . (5.25)

Application of the boundary conditions at the wave surface then yields

I
(vf)
0 = 1, I

(vf)
2 = −z0

li

2κ

Vi

{
i

(
1

V 2
i

+ 1

)(
∂K∗0s
∂ηi

)(
1

K∗0s

)
− 1

V 2
i

}
,

I
(vf)
3 = i

2κ

Vi

(
1

V 2
i

+ 1

)(
1

K∗0s

)
,

 (5.26)

where K∗0s = K∗0
(
z0/li

)
, and ∂K∗0s/∂ηi = ∂K∗0/∂ηi|ηi=z0/li . These solutions agree with

the solutions for fast waves in the limit that z0/li → 0.

5.6. Determination of the surface pressure perturbation

The solutions found above for the streamline displacement, h, are now used to compute
the asymmetric part of the wave-induced pressure through the boundary layer, and
thence the asymmetric part of the surface pressure which contributes to growth of the
waves. For a linear analysis of flow over a sinusoidal wave the wave-induced pressure
can be represented as p̃(ξ, η) = Re{p̂(η) eikξ}, where p̂(η) is a complex amplitude. The
asymmetric part of the pressure is then contained in Im{p̂}. This pressure contribution
is calculated here from the vertical momentum equation, (2.5), so that, on using (2.3)
to relate w̃ to s, the imaginary part of the pressure amplitude is obtained from

Im

{
∂p̂

∂η

}
= k2 Im{U2

Bh}+ kRe{τ̂}. (5.27)

The surface pressure is obtained by integrating (5.27) through each of the layers using
solutions in each of the layers for h, which have been calculated above, and for τ̂,
which have been calculated from the solutions for h and are listed in Appendix A.

In the inner surface layer, the solution (A 12) shows that Im{h} = o(aδkz0) and
(A 13) shows that Re{τ̂} = O(aku2∗). But the inner surface layer is so thin that the
pressure varies there by only an exponentially small amount, so that through its depth

Im{p̂(η0)} = Im{p̂s}{1 + O(kz0δ
2)}. (5.28)

Similarly, across the shear stress layer, (5.17) shows that Im{h} = O(aδ2) and (A 9)
shows that Re{τ̂} = O(aku2∗) so that the pressure remains constant with only small
variations:

Im{p̂(ηi)} = Im{p̂s}{1 + O(aku2
∗kli)} = Im{p̂s}{1 + O(aku2

∗δ)}. (5.29)

Now, across the transition layer the pressure does vary significantly with height.
First, the solution (5.11) shows that Im{h} has a contribution from h

(3)
t , which is of

O(δ). However, this term contains ηU ′B/UB which is itself O(δ) in the transition layer,
and so overall the contribution to Im{h} is O(δ2). The largest contribution to Im{h}
is then from h

(4)
t , which is O(aδ1+n). The solution (A 6) shows that Re{τ̂} = O(aku2∗),

which then gives a smaller contribution to ∂p̂/∂η than the contribution from Im{h}.
Integration of the vertical momentum equation from the surface then shows that

Im{p̂(ηt)} = Im{p̂s} − akU2
12κδ1+2n{Vi − V e−ηt(ηt + 1)}. (5.30)

Finally, in the upper layer the shear stress perturbation is exponentially small
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because of the damping. The solution (5.7), together with the solutions for the
coefficients from matching, shows that for fast waves Im{h} = Im{δ2H2} e−η1 and for
very fast waves Im{h} = Im{δH1} e−η1 , which can both be written Im{h} = δ2Hi e

−η1 .
Integration of the vertical momentum equation down from infinity then shows that

Im{p(η1)} ∼ −akU2
Bδ

2Hi e
−η1 , (5.31)

and the asymmetric part of the pressure decays with height according to potential
flow. Tracing through the matching we find that for fast waves

H
(f)
i = Im{H2} = Im{T9} = Im{I (f)

5 }, (5.32)

and for very fast waves

δH
(vf)
i = Im{H1} = Im{T6} = Im{I (vf)

2 }. (5.33)

Both of these are the values of Im{h} at the top of the inner shear stress layer as
ηi → ∞. Hence the asymmetric pressure in the outer region develops because the
streamlines at the top of the inner region are displaced asymmetrically about the
wave. Finally, (5.23) and (5.26) show that

H
(f)
i = 1

2
Im{I3} = − 1

V 2
i

(
S0 +

2

V 2
i

)
, (5.34)

H
(vf)
i = − 2κ

δVi

{(
1 +

1

V 2
i

)
Re

(
ηi
∂K∗0
∂ηi

)
s

}
, (5.35)

where S0 is the normalized surface stress given in (5.23).
The surface pressure is evaluated by matching (5.30) and (5.31) in their overlap,

where kη = δαηut with ηut = O(1) and 0 < α < n, in the limit δ → 0, which yields

Im{p̂s} = −ak {U1Ui2κδ
1+2n +U2

utδ
2Hi

}
, (5.36)

where Uut is UB evaluated in the overlap between the inner and outer region. Here we
set this level to be at kη = δα, i.e. at ηut = 1, and for definiteness we choose α = 1

2
n.

The precise value of kη is not important because UB varies only logarithmically with
height. Here we follow Hunt et al. (1988) and Belcher & Hunt (1993), who use the
wind speed at the height of a middle layer, lm, where klm = O((δ/κ)1/2). This length
scale is then asymptotically between the length scales of the inner and outer regions.
Hence we define Um = UB(lm) and lm = (δ/κ)1/2. Figure 2 shows the variation of klm
with c/u∗ when kz0 = 10−4.

Hence the asymmetric part of the surface pressure is written

Im{p̂s} = aku2
∗
{
β + O(δ2+n)

}
(5.37)

where for fast waves β(f) = β(f)
zs

+ β(f)
us

+ β0 and

β(f)
zs

= 2
U2
mU

2
1

U4
i

(
2− c

Ui

)
, β(f)

us
= −2

U2
m

U2
i

c

Ui

, β0 = 2κδ2nUi

u∗
, (5.38)

and for very fast waves β(vf) = β(vf)
zs

+ β(vf)
us

+ β0 where

β(vf)
zs

= −2κ
U2
mU

2
1

u∗U3
i

SK0
, β(vf)

us
= −2κ

U2
m

u∗Ui

SK0
, (5.39)

where

SK0
= Re

{
1

K∗0s

(
ηi
∂K∗0
∂ηi

)
s

}
. (5.40)
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In the calculation of the wave growth rate it will be useful to have the solution for
the surface stress (A 10), which is written here as

Re{τ̂s} = aku2
∗ {γ + O(δ)} (5.41)

where for fast waves γ(f) = γ(f)
zs

+ γ(f)
us

and

γ(f)
zs

= 2
U2

1

U2
i

(
1− c

Ui

)
, γ(f)

us
= −2

c

Ui

, (5.42)

and for very fast waves γ(vf) = γ(vf)
zs

+ γ(vf)
zs

and

γ(f)
zs

= −2κU2
1

Uiu∗
SK0

, γ(f)
us

= −2κUi

u∗
SK0

. (5.43)

Numerical tests have shown that, for the parameters of interest here, the differences
in the growth rates between fast and very fast waves are small, and so the results are
plotted for fast waves only.

Comparison of these solutions for β and γ and the corresponding solutions for
slow waves, which are listed in Appendix B, shows that the solutions are formally
the same, except that the solutions for slow waves are missing the terms with factors
of c/Ui. For slow waves this factor is O(δ), and so these terms would be calculated
at the next order, as was done explicitly by Belcher & Hunt (1993). Hence the main
difference between the solutions for fast and slow waves is the different value of li
that needs to be used in evaluating the formulae.

5.7. Discussion

The solutions derived here are valid provided the inner region is a thin layer, so
that kli � 1. The conditions required to keep kli � 1 were established in § 4.2 and
correspond to slow waves, with κc/u∗ of order one (when the solutions are quoted
in Appendix B), and to fast waves, with δc/u∗ of order one (when the solutions
are quoted in Appendix A). The method cannot be used for wind waves in the
intermediate regime because the inner region is no longer thin and also because the
critical height is of the same order as the depth of the inner region, so that Ui ≈ c
and the governing equation is singular. Resolution of this singularity requires explicit
analysis of the critical layer, which is beyond the scope of this paper.

Some understanding of the solutions can be obtained by considering the streamline
displacement, s(ξ, η), at the ‘top’ of the inner region, at η = li, denoted here by si(ξ).
To estimate the magnitude of si(ξ) rearrange (2.2), which relates ũ and s, to give the
streamline displacement in terms of the horizontal velocity perturbation

si(ξ) = zs(ξ)−
∫ li

z0

(ũ/UB) dη. (5.44)

The first term, zs(ξ) = Re{a eikξ}, follows from the kinematic boundary condition that
the wave surface is a streamline. Equation (5.44) expresses mass conservation across
the inner region: if the air speeds up, so that ũ > 0, then the streamline is displaced
downwards.

Now ũ can be estimated using the horizontal momentum equation (2.4). Since the
inner region is thin, kli � 1, the pressure is approximately constant with height there,
i.e. p̃(ξ, η) ≈ p̃(ξ, z0) ≡ p̃s(ξ). Hence combining (2.4) and (5.44) shows that si(ξ) can
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Figure 3. Sheltering over (a) slow and (b) fast waves.

be expressed as a sum of effects:

si(ξ) ≈ zs(ξ) + li
p̃s(ξ)

U2
i

+ sτ(ξ), (5.45)

namely displacement by the wave itself, a Bernoulli variation of streamline height
associated with pressure variations (which tends to be negative at the wave crest,
where the pressure is lowest and the air speeds are highest), and a displacement
caused by the change in shear stress across the inner region, which is given by

sτ(ξ) =

∫ ξ 1

U2
B

{τ̃s(ξ)− τ̃i(ξ)}dξ. (5.46)

Hence, deceleration of the air by a jump in wave-induced shear stress across the inner
region, τ̃s− τ̃i, leads to reduced air speeds and hence upward streamline displacement.

The solutions τ̃ = O(aku2∗), show that sτ ∼ (u2∗/U2
i )/k ∼ (u∗/Ui)li, which is a factor

u∗/U1 smaller than the other two terms and so the streamline displacement at the top
of the inner region, si, is largely independent of the turbulent stress. In the outer region
the wave-induced stress is negligible and so again the streamline displacement, which
towards the surface matches the value at the top of the inner region, is largely indepen-
dent of the turbulent stress and to a good approximation is just an exponential decay.

Although small, sτ is important. It is related, via (5.46), to the integral along a
streamline of the jump in wave-induced stress across the inner region. Hence, as an
air parcel moves along a streamline the frictional deceleration from the jump in wave-
induced turbulent stress leads to an accumulated displacement of the streamline that
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leads to the smallest wind speeds, and hence the maximum streamline displacement,
being downwind of the wave crest. Belcher & Hunt (1993) called this process non-
separated sheltering. For slow waves, the basic flow in the inner region is from left
to right, i.e. in the same direction as the wave propagates, and so the displacement
in the streamlines is to the right of the wave crest (figure 3a), but for fast waves
the basic flow in the inner region is from right to left, i.e. against the direction of
propagation, and the streamlines are displaced slightly to the left (figure 3b). This
small displacement of streamlines at the top of the inner region also means that
streamlines in the outer region are displaced slightly downwind of the wave crest.
The pressure perturbation that develops in the outer region then has its minimum
displaced downwind of the wave crest, which leads to the contribution to the surface
pressure denoted by βzs . Orbital motions at the wave surface also lead to a jump in
wave-induced stress across the inner region that is negative and leads to a sheltering
displacement of the streamline at the top of the inner region upwind of the wave crest.
This process leads to a small shift in the surface pressure denoted by βũs . Finally, in
the lower part of the outer region a small wave-induced pressure gradient develops
to balance the small wave-induced stress gradient. This leads to an additional shift in
the surface pressure minimum away from the wave crest, namely β0.

There are interesting differences between the sheltering for fast and slow waves.
When the waves are slow the surface stress is positive, τ̃s > 0, and the stress at the
top of the inner region is negative, τ̃i < 0. Hence the jump in stress, τ̃s− τ̃i, is large, so
there is a strong sheltering effect and substantial values of βzs . In contrast, when the
waves are fast the wind near the surface is against the direction of wave propagation
so the wave-induced surface stress is negative, τ̃s < 0. The stress at the top of the
inner region remains negative, τ̃i < 0. The net jump in stress across the inner region
is therefore much smaller and the sheltering is weaker.

6. Growth and decay of the waves
The wave-induced pressure and stress do work at the wave surface, which then

leads to an energy flux into or out of the wave motions, thence leading to wave
growth or decay. Following Davis (1972) and Belcher & Hunt (1993), an equation
can be formed for the wavelength-averaged energy in the wave motions, Ẽ. If only
the leading-order quadratic terms are retained then three sources of work change Ẽ,
namely

∂Ẽ

∂t
= 〈σ̃ij ũinj〉 = 〈−c{−p̃s + τ̃33s}dzs/dξ〉+ 〈τ̃sũs〉, (6.1)

where 〈 〉 denotes average over a wavelength, σ̃ij is the wave-induced stress tensor, and
nj = (−dzs/dξ, 1) is the normal to the surface (to the leading-order approximation).
The kinematic boundary condition w̃s = Dzs/Dt = −c dzs/dx was used in evaluating
the first term on the right of (6.1). The contribution from the normal stress term
is small, −c〈τ̃33s dzs/dξ〉, (cf. Belcher & Hunt 1993; Mastenbroek 1996) because it
requires surface stress perturbations in phase with wave slope, which are smaller than
perturbations in phase with the elevation (Cohen 1997), and so is neglected here.
Hence two terms need to be evaluated.

The first term, c〈p̃s dzs/dξ〉, can be evaluated using the solution for the asymmetric
surface pressure (5.37) to yield

c〈p̃s dzs/dξ〉 = 1
2
(ak)2u2

∗c β, (6.2)
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where β is given by (5.38). The second term in (6.1), 〈τ̃sũs〉, can be evaluated once the
horizontal motions at the surface are specified. For deep-water gravity waves with
the solution for the surface stress (5.41) this term gives

〈τ̃sũs〉 = 1
2
(ak)2u2

∗cγ, (6.3)

where γ is given in (5.42).
The wavelength-averaged energy in a deep-water wave is Ẽ = 1

2
(ρw/ρa)ga

2, with
the current normalization that the density of air is one (Phillips 1977, p. 39), so that

∂Ẽ/∂t

Ẽ
=
ρa

ρw

(u∗
c

)2

σ(β + γ), (6.4)

where σ = ck is the radian wave frequency. Hence the waves grow or decay exponen-
tially in time, with an e-folding time given by the reciprocal of the right-hand side of
(6.4).

The expression obtained here for the e-folding time of the waves has a similar form
to that found by previous investigators from Miles (1957) onwards and found in data
(Plant 1984). It is proportional to the ratio of the water to air densities, increases
quadratically with wind speed, through the u2∗ term, because it scales on the surface
stress in the basic state wind profile which controls the strength of the sheltering. For
a deep-water wave, (6.4) decreases with increasing wavelength, since σ/c2 = (k3/g)1/2.
The factor, denoted here (β+ γ), has been intensely debated in the literature. It is this
factor that we now discuss and compare with previous studies and data.

In this linear analysis the value of the growth-rate coefficient, (β+ γ), does not vary
with wave slope, but it does vary with the relative wind speed, c/u∗, with the relative
surface roughness kz0 and with the rate of damping of the mixing-length model, n,
see (3.5). First consider the variation with the damping rate, n. Strictly 0 < n < 1, but
consider the limit n→ 0, which is the limit of no damping, so that the mixing-length
model is allowed to operate right up through the outer region. Although according
to the scaling arguments given in § 3 such a mixing-length model is inappropriate in
the outer region, this limit does allow comparison with previous studies. Hence in the
limit n→ 0 the pressure asymmetry associated with the outer-region stress is

β0 → 2κ(Ui − c)/u∗. (6.5)

This is the value of the growth-rate coefficient obtained by Jacobs (1987), who used
an eddy-viscosity model for the wave-induced shear stress throughout the flow and
considered only slow waves. The analysis here shows how, even when a mixing-length
model is used throughout the flow, there are additional contributions to β from
inner-region effects (i.e. βzs and βũs) and also from the surface-stress effects (i.e. γzs
and γũs). We have also shown that this result also applies to fast waves.

In the limit of strong damping, when the shear stress is damped rapidly to zero
in the outer region, namely when n → 1, and for slow waves, the solutions obtained
here tend to the solutions found by Belcher & Hunt (1993), who simply set the
mixing-length model to zero above the inner region. Hence the discontinuity in the
solutions of Belcher & Hunt (1993) for the stress perturbation at the top of the inner
region is not important for practical purposes when calculating the wave growth rate.

As n increases from very small values, β0 reduces. When n > 1
2

the β0 contribution
has a smaller magnitude than βzs and βũs . Figure 4 shows the variation of β with
c/u∗ for n = 0, 1

2
and 1. The theoretical curves for slow waves are truncated when the

depth of the inner region reaches its value at the bifurcation, namely kli = 2κ2, which
yields a maximum of c/u∗ = {ln(2κ2/kz0)− 1}/κ (see figure 2). The theoretical curve
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Figure 4. Variation of β with wind-wave speed for different damping of the mixing-length model
(kz0 = 10−4).

for fast waves is begun when δ/κ = 1 (see figure 2). It is clear from these plots that,
although β0 is formally of the same magnitude as βzs and βũs when 0 < n < 1

2
, the

numerical value of β0 is smaller than the two other terms when n = 1
2
. We conclude

that for values of n that correctly damp the mixing-length model in the outer region,
i.e. 0 < n < 1

2
, β is dominated by βzs and βũs that are associated with sheltering in

the inner region. This conclusion agrees with the findings of Harris et al. (1996), who
computed β using a damped k − ε model for stationary waves and found that the
results are insensitive to the damping rate beyond a threshold.

Van Duin (1996) developed an analytical model for growth of slow waves based on
similar assumptions to the model developed here, but with an eddy viscosity that is
algebraically damped in the outer region (rather than exponentially damped as here).
In the limit that kz0 → 0 and κc/u∗ → 0, when Um and Ui → U1, the present results
yield

β → 4(1− c/U1) + β0. (6.6)

The first term, which comes from βzs + βũs , is the same as the second term in van
Duin’s equation (4.3). The final term obtained here, namely β0, corresponds to the
last term in van Duin’s (4.3), but differs in detail because we have used different
forms for the damping (algebraic in van Duin, see his equation (2.4); exponential
here, see equation (3.5)). Van Duin’s (4.3) has an additional term of −2. We have been
unable to establish the origin of this term in van Duin’s calculations. He evaluated
his formula to obtain a value of β in the range 3–4: much smaller than the values
obtained here. The reason for the smaller values is that van Duin’s method does not
account for the shear in the approach flow, which yields the factors of Um/Ui in our
approach (5.38). These factors, when raised to the powers of 2 or 4 as they are in our
(5.38), are numerically large and account for our larger values.
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Figure 5. Comparison of the present theory with computations by Mastenbroek (1996).

Evidence that these factors of Um/Ui are accurate comes from figure 5, which
shows comparisons between values of the growth-rate coefficient, β + γ, calculated
using the present theory with full damping, n = 1, and values computed numerically
by Mastenbroek (1996), who used a full second-order closure model to parameterize
the turbulent stress. The criterion for fast waves, namely δ/κ > 1, yields c/u∗ > 31
when kz0 = 10−5 and so no theoretical curve is shown for fast waves in this case.

Figure 5 shows that the present solutions agree well with Mastenbroek’s fully
nonlinear computations for both fast and slow waves. The theory shows both the
same variation with c/u∗ and also the same variation with the relative roughness kz0,
which suggest that the factors containing Um/Ui are accurate. Agreement between the
computations and the theory is particularly satisfying because we have argued in § 3
that the damped mixing-length model used here captures the essence of the physics
parameterized in a full second-order closure. The results in figure 5 support this claim.
Separate evaluation of the contributions to the growth-rate coefficient (Cohen 1997)
shows that it is the contribution from βzs , i.e. the contribution from sheltering, that
dominates for slow waves (in agreement with Belcher & Hunt 1993). In the slow-wave
regime the results computed by Mastenbroek are larger than the theoretical values as
c/u∗ approaches its maximum value for slow waves. At these larger values of c/u∗ the
small parameter δ/κ becomes larger and the asymptotic solutions are not so accurate.
Physically, the critical-layer mechanism might be contributing to wave growth at these
more intermediate wave speeds. Nevertheless, the value of c/u∗ that corresponds to
the maximum value of β + γ computed by Mastenbroek corresponds well with the
maximum value of c/u∗ in the slow-wave regime, which should be a useful practical
result. The present work also shows that it is the contribution from γzs , i.e. the work
of the wave-induced shear stress at the surface, that dominates for fast waves (the
sheltering term is small for fast waves as explained in § 5.7). The fast-wave theory
agrees well with the computations when kz0 = 10−3 and 20 < c/u∗ < 25. For larger
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Figure 6. Comparison of the present theory with data collated by Plant (1984).

values the agreement is not as good, probably because parameters are moving into
the very fast regime.

The values of the growth-rate coefficient for the fast waves are smaller than for
the slow waves. The actual e-folding times for decay of fast waves are even longer.
Recall from (6.4) that the energy contained in the wave motions increases or decreases
exponentially in time and the e-folding time is

te =
ρw

ρa

1

σ

(
c

u∗

)2
1

|β + γ| . (6.7)

For given values of the wind speed U1 =
(
u∗/κ

)
ln 1/kz0, wind-wave parameter, c/u∗,

and relative roughness, kz0, the wave phase speed can be determined and hence,
on using the linear dispersion relation c2 = g/k, so can the wavenumber k and
wavelength 2π/k, of the waves. For example, if U1 = 10 m s−1 and kz0 = 10−4, then
u∗ ≈ 0.43 m s−1. A slow-wave case with c/u∗ = 5, then yields c ≈ 2 m s−1 and λ ≈ 4 m
and so for the air–sea interface, with ρw/ρa ≈ 800 the e-folding time for wave growth
is te ≈ 300 s, i.e. 5 minutes. In contrast, a fast-wave case with c/u∗ = 30, then yields
c ≈ 15 m s−1 and λ ≈ 140 m and so te ≈ 11.4 × 105 s, i.e. about 30 hours. We are
not dismayed by this value: it has long been known that long-wavelength swell can
propagate long distances without significant dissipation (Ursell 1954). The long time
scales arise from the large values of c/u∗, whose square multiplies the e-folding time.

Finally, figure 6 shows comparisons of values of the growth-rate coefficient from
the theory with values from laboratory and open-ocean experiments collated by Plant
(1984). (Belcher, Harris & Street 1994, show these data as originally plotted by Plant
and then also plotted as in figure 6.) The data lie in the slow- and intermediate-wave
regimes. As has been reported by others (e.g. Mastenbroek et al. 1996; Belcher &
Hunt 1998) the theoretical values are smaller than the measurements. We can offer
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no new explanation of this, except to point out that the values measured by Shemdin
& Hsu (1967) do lie close to the theory. This is significant because Shemdin & Hsu
measured growth of wind-ruffled paddle-generated waves – a configuration that is
close to the configuration modelled in the present theory. In contrast the remaining
measurements in figure 6 implied the growth rate of purely wind-generated waves,
which are strongly influenced by nonlinear wave–wave interactions and wave breaking
(e.g. Phillips 1977, § 4.6).

Hasselmann & Bosenberg (1991) made measurements on the ocean over a wide
range of c/u∗ to determine the growth or decay rates of the waves. They state that
from their observations they could not detect either growth or decay of fast waves.
What they found was that when the waves travel faster than UB(k−1) the absolute
value of what we call |(u∗/c)2(β + γ)| is less than 0.03. The theory presented here
shows that when kz0 = 10−3 this factor is about 0.0125 when c/u∗ = 20, so that with
only three times the accuracy of their experiment, decay of fast waves should be
measureable. Perhaps the time has come to conduct new experiments.

7. Conclusions
Air flow over waves is usefully divided into two regions. Close to the interface is

an inner region where the wave-induced turbulent shear stress significantly affects
the wave-induced mean flow, which leads to a sheltering effect, whereby streamlines
are displaced asymmetrically about the wave crest. In an outer region, turbulence is
advected over a wavelength too rapidly for it to transport significant momentum and
so the wave-induced flow there is inviscid to a good approximation. There are three
parameter regimes that are distinguished by the relative wind and wave speeds, c/u∗.
In the slow-wave regime, where κc/u∗ is of order one, the critical height, zc, where the
mean wind speed equals the wave phase speed, lies very close to the surface, within
the inner surface layer and plays no significant dynamical role in the flow. In the
fast-wave regime, where δc/u∗ is of order one, the critical height lies well above the
inner region, and too far from the surface to have a significant dynamical effect. In
the intermediate regime, where 20 < c/u∗ < 25 (if kz0 = 10−4), the critical layer is
towards the top of the inner region and probably plays a significant dynamical role,
although further work is needed to clarify the combined effects of sheltering and the
critical layer in this regime.

Here we have analysed air flow over slow and fast waves by calculating the
displacement of streamlines as they pass over the wave. The streamline displacement
at the top of the inner region is controlled by three processes: displacement over
the wave surface, a Bernoulli displacement associated with pressure variations, and
a small, but important, asymmetric displacement due to the turbulent shear stress.
This asymmetric displacement of streamlines leads to sheltering downwind of the
wave crest. Above the inner region, in the outer region, the streamline displacement
remains in phase with the streamline at the top of the inner region: no further
asymmetry is produced because the wave-induced shear-stress gradient there is too
weak. A pressure perturbation then develops in the outer region that has its minimum
displaced downwind of the wave crest. This pressure perturbation together with the
surface stress perturbation does work at the wave surface and leads to growth of slow
waves and decay of fast waves.

There is hope that the present formulation, wherein the streamline displacement is
analysed, can shed light onto the intermediate-wave regime, where there is a dynamical
effect of the critical layer in addition to the sheltering caused by the turbulent shear
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stress, because Belcher et al. (1998) have shown how an inviscid critical layer can be
analysed in this framework.

Values of the wave growth rate calculated from the analysis agree well with
computations of Mastenbroek (1996) and with the laboratory data for slow and
intermediate waves of Shemdin & Hsu (1967), but other experiments report values
that are larger than the theoretical values by a factor of about two. It is time to re-
evaluate these data and perhaps also time to perform further experiments, particularly
to produce data for decay of fast waves.

The e-folding time for decay of fast waves is very long: a day or more for the
values chosen in § 6. So why should this wind-induced decay be significant? As we
suggested in the introduction, one application of this theory for interaction between
wind and fast waves is in the dynamics of the spectrum of fully-developed sea. When
the sea state is fully developed, nonlinear interactions transfer wave energy away
from the peak in the spectrum into both higher- and lower-frequency waves (Komen,
Hasselmann & Hasselmann 1984). Now, the peak in the spectrum corresponds to
waves that travel at the wind speed, so that lower-frequency waves are travelling
faster than the wind. So, according to the present calculations, these low-frequency
waves lose energy to the wind. The slopes of these low-frequency waves are so small
that breaking must be at most very rare. Hence, if there is an equilibrium, this loss
of energy to the wind might balance the energy gained at these low frequencies by
nonlinear interactions.

It is a pleasure to thank Julian Hunt and Nigel Wood for useful discussions and
suggestions during the course of this work. J.E.C. is grateful to NERC for funding
under a CASE studentship with the UK Met. Office. Funding for the completion of
this work was provided by the EC under the ASPEN project, contract ENV4-CT97-
0460.

Appendix A. Solutions for fast waves
A.1. Upper layer

In the upper layer η = η1/k, where η1 = O(1), and solutions are

û ∼ akUB e−η1 + O(δ), (A 1)

ŵ ∼ ak iUB e−η1 + O(δ), (A 2)

τ̂ ∼ O(ak e−1/δ). (A 3)

A.2. Transition layer

In the transition layer η = ηtδ
n/k, where ηt = O(1), and solution are

û ∼ ak U
2
1

UB

{
1− δn

∫ ηt

V 2(y) dy + O(δ)

}
, (A 4)

ŵ ∼ ak iUB

{
1− δn

∫ ηt dy

V 2(y)
+ O(δ2n, δn+1)

}
, (A 5)

τ̂ ∼ −2ak u2
∗
e−ηt

V 2
{1 + O(δ)} . (A 6)



Turbulent shear flow over fast-moving waves 369

A.3. Inner shear stress layer

In the inner shear stress layer η = ηili, where ηi = O(1), and solutions are

û ∼ akU1

[
1

Vi
+
δ

κ

{(
S0 +

2

V 2
i

)
K∗0 (X) +

1

V 2
i

ln ηi − 2κ2(ηi + i)

}
+ O(δ2)

]
, (A 7)

ŵ ∼ ak iU1

[
Vi − δ

{
2κ

V 2
i

ηi +
1

κ
ln ηi

}
+ O(δ2)

]
, (A 8)

τ̂ ∼ −2aku2
∗

[(
S0 +

2

V 2
i

)
ηi
∂K∗0
∂ηi

+
1

V 2
i

− 2κ2ηi + O(δ)

]
, (A 9)

where

1
2
S0 =

(U1 − c)2

Ui(Ui − c) −
c

Ui

. (A 10)

A.4. Inner surface layer

In the inner surface layer η = η0z0, where η0 = O(1), and solutions are

û ∼ ak
{
c+ 1

2
S0

u∗
κ

ln η0 + O(u∗kz0)
}
, (A 11)

ŵ ∼ ak ic {1 + O(kz0)} , (A 12)

τ̂ ∼ aku2
∗
{
S0 + O(kz0/δ

2)
}
. (A 13)

A.5. Inner region for very fast waves

To the order listed, solutions in the outer region are the same for very fast waves as
for fast waves. Hence, only solutions in the inner region need to be listed here:

û ∼ akUB

[
1

V 2
i

+

(
1 +

1

V 2
i

)
K∗0 (X)

K0s

+ O(δ)

]
, (A 14)

ŵ ∼ ak iUB

[
1 + δ

{
I1ηi + I2 + I3ηi

∂K∗0
∂ηi

}
+ O(δ2)

]
, (A 15)

τ̂ ∼ ak2κu∗UB

1

K∗0s

(
1 +

1

V 2
i

)
ηi
∂K∗0
∂ηi

, (A 16)

where I1, I2 and I3 are given in (5.25) and (5.26). The surface stress is

τ̂→ −2akκu∗c
1

K∗0s

(
1 +

1

V 2
i

)(
ηi
∂K∗0
∂ηi

)
s

. (A 17)

Appendix B. Solutions for slow waves
Solutions in the outer region are formally the same for slow and fast waves. Any

differences are accounted for automatically by the different sign of UB , which is
positive for fast waves and negative for slow waves. Hence we list here only the
solutions in the inner region, which do differ.

B.1. Inner shear stress layer

In the inner shear stress layer η = ηili, where ηi = O(1), and solutions are

û ∼ akU1

[
1

Vi
− δ

κ

{(
S0 +

2

V 2
i

)
K0(X) +

1

V 2
i

ln ηi + 2κ2(ηi − i)

}
+ O(δ2)

]
, (B 1)
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ŵ ∼ ak iU1

[
Vi − δ

{
2κ

V 2
i

ηi − 1

κ
ln ηi

}
+ O(δ2)

]
, (B 2)

τ̂ ∼ −2aku2
∗

[(
S0 +

2

V 2
i

)
ηi
∂K0

∂ηi
+

1

V 2
i

+ 2κ2ηi + O(δ)

]
, (B 3)

where

S0 =
2

V 2
i

. (B 4)

B.2. Inner surface layer

In the inner surface layer η = η0z0, where η0 = O(1), and solutions are

û ∼ ak
{
c+ 1

2
S0

u∗
κ

ln η0 + O(u∗kz0)
}
, (B 5)

ŵ ∼ ak ic {1 + O(kz0)} , (B 6)

τ̂ ∼ aku2
∗
{
S0 + O(kz0/δ

2)
}
. (B 7)

B.3. Asymmetric pressure and shear stress at the surface

Calculation of the pressure variation through the flow as in § 5.6 shows that for slow
waves

Im{p̂s} = aku2
∗
{
β + O(δ2+n)

}
(B 8)

where β = βzs + βus + βo and

βzs = 4
U2
mU

2
1

U4
i

, βus = O(δ), β0 = 2κδ2nUi

u∗
. (B 9)

The surface stress is given by

Re{τ̂s} = aku2
∗ {γ + O(δ)} (B 10)

where γ = γzs + γus and

γzs = 2
U2

1

U2
i

, γus = O(δ). (B 11)
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